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ABSTRACT

This paper provides a Mathematical model of relighting and adap-
tation of human Vision based on the approach of von Kries. It
extends Retinex theory into a new image processing formalism
using the mathematical concepts of Bundles and Connections,
that is well suited for scene relighting applications.

Our model generates considerably improved results in the case
of scratch/wire/wrinkle removal and has been implemented in
Photoshop. The result is valid in arbitrary color space, and in-
variant under simultaneous lighting and adaptation transforms
type von Kries.

This mathematical model also provides an exact solution to the
problem of High Dynamic Range compression, and can be ap-
plied to a wide range of image processing algorithms.

1. INTRODUCTION

We have great flexibility in adapting to different lighting
conditions. For example, entering a dark movie theatre,
we can not see, but within a few seconds we are able to
see well enough to find a seat. This is global adaptation.

Adaptation could also be local. It is a well known fact that
the image as perceived is different from the image as mea-
sured by a camera. Perceived brightness, also called light-
ness in Retinex theory [6], depends on the surroundings
of each pixel, and on the image as a whole. Experiments
have shown that local adaptation is fast. Also the process
is not limited to the retina only. Generating lightness is a
complex process taking place in the cortex.

The process of addition, or generating lightness, is in-
fluenced by semantic information. For example, the sun
on Figure 1 appears much brighter than it would be if
measured by pixel value. A potential explanation for this
could be the halo around the sun and our understanding
that the sun must be very bright.

Some of the effects of local adaptation to lighting con-
ditions are well understood in the general framework of
Land’s Retinex theory [6], [7]. However, this theory still

Figure 1: Semantic adaptation: The sun appears brighter
than it is.

does not provide a solution for actually calculating light-
ness in all cases. For example, it does not provide a so-
lution in the case of objects of smoothly changing bright-
ness in the image (as opposed to ’Mondrian’ pictures con-
sisting of patches of constant color where it works well).
Even in cases where no solution is available, the main idea
of Retinex theory - that we see pixel values as transformed
by our visual system/interpretation - still holds true.

A big number of applications treat color additively, as a
linear combination of three basis colors. This is the more
widely accepted approach. In other cases color is treated
multiplicatively.

Multiplicative representation of color is appropriate for
description of light reflection/absorbtion. In sensor space
this representation is equivalent to von Kries-type trans-
forms of reflectance. Related approaches are widely used
not just in Retinex theory, but also in image based ren-
dering and lighting - for editing movies and a wide range
applications of relighting [8], [9], [10].

We would like to consider these lighting/adaptation trans-
forms together with Retinex theory in relation to image
processing. As J. Koenderink notes [11], we should do
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image processing ’right’ in terms of how images are per-
ceived, taking into account the invariance of the image we
see under a group of transformations of the physical im-
age that can be interpreted as relighting.

In this paper we present our new mathematical model of
relighting and adaptation. We propose a geometry of im-
age space as a fibred manifold. Every image can be de-
scribed as a section in a fibred space, and in this model we
can clearly and accurately describe the essence of Retinex
and other local adaptation theories, perform tone mapping
by simulated relighting, and other image processing algo-
rithms.

In the traditional approach grayscale images can be repre-
sented as surfaces in R3. Pixels are defined by their co-
ordinates x, y in the image plane, and their corresponding
values in z. It is customary to assume that brightness of
different pixels can be compared by this value of z. How-
ever, there are illusions that provide examples of same
pixel values appearing different. Retinex and other adap-
tation theories are also based on considering the difference
between pixel values and what we see. Pixels with higher
z do not always appear brighter, and in certain cases the
theory actually provides an algorithm to calculate visible
brightness (lightness) based on raw pixel values.

The traditional method of comparison of pixels, and sub-
sequently the concept of derivative, needs to be replaced
with a new method of comparison that more accurately
represents our visual perception and adaptation. This re-
placement of derivatives with modified (adapted) deriva-
tives will alter our approach to image processing. Further,
it will modify essentially any image processing algorithm,
making it more closely related to human perception.

2. FIBRED SPACE APPROACH TO IMAGE
PROCESSING

2.1. Our New Model of Image Space

The traditional model of image space is a Cartesian prod-
uct of the image plane and the positive real line of pixel
values R+. Grayscale images are represented as surfaces
in R3. Pixels are defined by their coordinates x, y in the
image plane, and their corresponding grayscale values in
the z axis.

This mathematical structure contains two natural projec-
tions: For any point in image space we can immediately
know which pixel it is, and what the pixel value is – ac-
cording to the two components of the Cartesian product
R2 ×R+. This makes possible the simple view of the im-
age as a function z = f(x, y).

Lightness depends on many factors, including local com-
parisons and semantic information. The complex nature
of adaptation suggests that the second projection (mea-
suring lightness) is unpredictable in computer vision, and
hence does not exist a priori. Human visual system does
not compare pixels by their luminance. We need a model
of image space in which pixel values, even if well defined,
are not comparable a priori.

We propose a model that replaces the Cartesian product
structure of Image Space with a Fibred Space structure
(see also [11]). The new structure is ’weaker’ because it
’forgets’ (in the mathematical sense) one of the projec-
tions. In this paper we are showing on the basis of two
examples how fibred space structure can be more useful.

2.2. Definition of Fibred Spaces (Bundles)

We start with an introduction to fibred spaces in general,
then we show how they can be used to model images and
transformations.

By definition [12], a Fibred Space (E, π, B) consists of
two spaces: total space E and base space B, and a map-
ping π, called projection, of the total space onto the base.
Space B has lower dimension than E, so many E points
map to the same B point, as shown in Figure 2.

In our model of grayscale images the total space is R3,
the base is the image plane, and π gives us the location of
each pixel in the image plane. There is no mapping that
would give us the grayscale value of lightness for a pixel.

For each point p ∈ B there is the so-called fibre (Fp in
Figure 2) in E, consisting of all points that are sent to
p by π (definition of fibre). We cannot compare the light-
ness of two points from different fibres because there is no
mapping that a priori would produce that lightness. Each
fibre has its luminance coordinate, but luminances in dif-
ferent fibres are not related perceptually. This corresponds
to the fact that π has no inverse. In other words, there is
no distinguished mapping of B into E.

By definition, a section in a Fibred Space is a mapping f
that sends points in B to E, and has the property π(f(p)) =
p for any p ∈ B. See Figure 3.

A section selects just one of the many points in each fi-
bre. It defines one manifold (connected set of points) in
total space E, with one point in E for each point in B.
Intuitively it is “the closest we can get to the concept of
function without defining a function”.
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Figure 2: Fibred space (E, π, B).

Figure 3: Section in fibred space.

A grayscale image is a section in a fibred image space
(R3, π, R2). Since there is no projection onto z, there
is no comparison between different pixels. As a result,
change in image lightness and directional derivative at a
point in image space is defined not by a displacement vec-
tor in the image plane (x, y), as it is with functions, but
in relation to a vector in the total space (x, y, z), which
is called “the horizontal lift” of the vector in (x, y). (Of
course, there is a luminance value z for each pixel, but it
is a perceptually meaningless coordinate.)

Before giving rigorous definitions, let’s look at one imagi-
nary practical example that will help build some intuition.

2.3. Intuition

Imagine a scenario, in which three mathematicians are
building houses on a hill. Figure 4 compares the three “ar-
chitectures”. The first mathematician doesn’t know any-
thing about the fibred structure of 3D due to gravity. In
other words, he ignores the projection that singles out one
direction as “vertical”. This is obviously wrong.
Lesson: If our problem has fibred structure, we have to
take it into consideration and cannot ignore the projection.

The second mathematician correctly takes into account the
projection, but he uses a wrong measure of horizontality.
He assumes that horizontal is the local surface of the earth.
He calculates derivatives relative to the hill slope.
Lesson: The concept of ’horizontal’ is not defined a priori
in a fibred space, and we need to choose it appropriately
for each particular application.

Figure 4: Three houses on a hill.

Finally, the third mathematician uses the correct measure
of horizontality. If his coordinate system has x along the
surface of the earth, he calculates the slope of the floor as
d/dx + a, where a compensates for the slope of the hill.
This way of calculating derivative, relative to a distribu-
tion of planes that are defining what “horizontal” means
at each point, is called Covariant Derivative or Connec-
tion. Next we will give a more rigorous definition.

2.4. Connections

In fibred spaces, also known as Bundles, changes in the
section (slopes of the section) are measured by the so called
connection, or covariant derivative (instead of derivative).
As the name suggests, connections show how fibres are
connected or glued together. Connections are used like
derivatives to compare or transfer pixel values from one
fibre to another. In Gauge theories [13] the simplest ex-
ample of such a field is the vector potential in Electrody-
namics.

Let us consider a vector field (a vector at each point) in
the image plane. In tensor notations we use coordinates
xµ, µ = 1, 2 in the plane, instead of the more traditional
x and y. A vector field describes at each point the direc-
tional derivative X with components X µ = Xµ(x), and
tells us how to differentiate functions in a given direction.
A common notation for vector fields is X = X µ∂/∂xµ,
summation over µ. In the traditional treatment of images
as functions on the plane, a vector field (directional deriva-
tive) is the way to calculate rate of change at a given point,
in a given direction X.

If the image is defined as a section in a fibred space, the
above definition of change does not work because in fibred
spaces there is no concept of derivative. Perceptually, we
do not have a sense of horizontality because there is no
natural projection on lightness. This sense of horizontal-
ity needs to be defined as an additional structure. This
structure is called connection.

A connection on a bundle (E, π, B) is a way for any vec-
tor field X defined on B to differentiate a section σ on E
and produce a new section. If F and S are functions on
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B, the derivative of the product FS in direction X would
be X(FS) = (XF )S + FXS, which is known as the
Leibniz rule for derivative of a product. The concept of
connection is a generalization of the above Leibniz rule to
the case of sections, which replace functions. By defini-
tion, if ∇ is a connection, ∇X(Fσ) = (XF )σ + F∇Xσ.
Note that the derivative X acts on a function, while the
“derivative” acting on the section is ∇X.

In our image processing applications, a color picture is a
section in a vector bundle, where each three dimensional
fibre is a copy of the vector space of colors. We call it
the color bundle. A connection is “adapted directional
derivative of color”, as perceived by the observer. In other
words, it shows how the human visual system perceives
directional change of color in a given state of adaptation.

Any section can be represented as a linear combination of
a set of basis sections σi. In other words, σ = Fiσi. Sum-
mation is assumed and the coefficients Fi are functions.
These functions are referred to as color channels (Photo-
shop terminology). Some more notations: Everywhere in
this paper i = 1, 2, 3 enumerates color channels. We al-
ways assume summation over repeated indexes; upper and
lower indexes are treated the same assuming Euclidean
metric. We use greek indexes, µ = 1, 2, to enumerate im-
age coordinates x, y. We write ∂µ for ∂/∂xµ, and ∇µ for
∇∂/∂xµ .

By the above definition of connection, ∇µ would act on a
section σ = Fiσi in the following way:

∇µσ = ∇µ(Fiσi) = (∂µFi)σi + Fi∇µσi (1)

This expression simply extends the Leibniz rule for the
action of a derivative on functions to a Leibniz rule for
sections. We don’t know what the action on the basis sec-
tion is, but we know that it must be again a section, rep-
resentable by the basis. So, it is ∇µσi = −Aj

iµσj where
Aj

iµ are functions.

∇µ(Fiσi) = (∂µFi)σi − FiA
j
iµσj (2)

As a matter of notation, often the basis σi is dropped, and
we talk of the section as represented in terms of Fi. Then
the action of the connection on Fi is:

∇µFi = ∂µFi − Aj
iµFj . (3)

This expression for the connection, as a replacement of
the derivative, will be our main tool throughout this paper.
The rule of thumb is that connection ∇µ replaces the gra-
dient ∂µ according to the so called “minimal substitution”

∂µ → ∇µ = ∂µ − Aµ. (4)

We call ∂µ − Aµ the covariant derivative, or perceptual
gradient.

When representing images as a sections in the color bun-
dle, in given RGB space coordinates, Aµ will be 3 × 3
matrices, as shown in the next section.

3. THE GROUP OF VON KRIES LIGHTING /
ADAPTATION TRANSFORMS.

3.1. Additive color vs. Multiplicative color

In the so-called cone space coordinates [14], color is rep-
resented as a vector �F = (L, M, S). Here L, M , and S
stand for Long, Medium, and Short wavelengths of light,
and represent the three types of cone sensors in the human
retina. Rod sensors, which play a role in low lighting con-
ditions, are not considered in this model. In the case of a
camera, L, M , and S are the three camera sensors.

Sometimes, Log-space representation of color is used in
the context of cone sensors output, �f = (l, m, s), where
l = lnL, m = lnM , s = ln S. In a simplified toy-model
of human vision these Log signals are being sent from the
eye to the cortex. This model will be of help for under-
standing our approach.

Usually in the literature color is treated additively, as in
RGB representation. That is, each color as a point in a
vector space is a sum or linear combination of basis col-
ors.

There is also a multiplicative approach to color. In line
with von Kries [14, 15] and Retinex [6] models, relighting
the scene (or casting a shadow) is expressed as a multipli-
cation by a matrix diagonal in LMS space. The same type
of transformation also describes internal adaptation of the
visual system to different lighting conditions, at least in
the von Kries model. Starting from some fixed reference
point, any color can be represented by such a transform.

The set of all those lighting/adaptation transformations
forms a Lie group1. We will refer to it as the von Kries

1A Lie group is a very intuitive mathematical construction, which
generalizes everyday examples of continuous transforms, like the plural-
ity of all rotations in space or the plurality of all translations in space. A
group is a set of transforms, φ1, φ2, ..., any two of which can be multi-
plied and the result φ1φ2 belongs to the group. Also, for any φ the in-
verse φ−1 belongs to the group, so that φφ−1 = 1. Here 1 is the identity
transform of the group. The elements of a Lie group can be expressed as
finctions of a number of parameters, for example φ = φ(ϕ1, ϕ2, ϕ3),
and satisfy natural smoothness properties.
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group. The action of this group on a color RGB-vector �F
has been described first by von Kries back in 1902 [15],
and in our notations it is:

�F → φ�F (5)

where the matrix φ is diagonal in cone space coordinates,
L, M, S. (Note however, that we can work in any RGB-
space, and still the same equation (5) holds, with the ap-
propriate matrix.) The von Kries group transform (5) can
always be expressed as:

�F → eKiϕi �F (6)

where Ki are the so called generators2 of the group. In
LMS-space the generators have their simplest form:

K1 =

⎛
⎝ 1 0 0

0 0 0
0 0 0

⎞
⎠

K2 =

⎛
⎝ 0 0 0

0 1 0
0 0 0

⎞
⎠

K3 =

⎛
⎝ 0 0 0

0 0 0
0 0 1

⎞
⎠ .

They are general matrices in other color space coordi-
nates. Formula (6) will be our only use of group theory
in this paper.

From the above it is clear that we are dealing with the
group of all 3× 3 matrices that are diagonal in cone space
representation, where ϕi are logarithms of the diagonal
elements of φ. In Log-space this is the Abelian group of
translations �f → �f+�ϕ. It is obvious that the group should
be Abelian (φ1φ2 = φ2φ1) regardless of the representa-
tion: Consider lighting the scene with a red light, and then
adding a green filter in front of the light source. This is
the same as lighting the scene with a green light, and then
adding a red filter.

3.2. Relighting Gradients

Changing the lighting conditions or relighting can be dif-
ferent at different points in the scene/image. The same
must be true for adaptation. Let’s see how the perceptual
“covariant” derivative acts on the group transformations
in the general adaptation case where group parameters are

2Generators of a Lie Group are matrices defining infinitesimal group
transforms in the sense that they are the linear terms in a Taylor series
expansion around the identity group element. From the generators the
whole group can be reconstructed. We will simply use the final result (6)
for our particular case.

functions of image coordinates, ϕi = ϕi(x, y). One can
verify that

(∂µ − Aµ)eKiϕi �F = eKiϕi(Ki∂µϕi + ∂µ − Aµ)�F (7)

Considering (7), there is a difference between the behavior
of pixels and image gradients during adaptation to relight-
ing: Pixels are only multiplied by eKiϕi , while for gradi-
ents also there is an additive term proportional to K i∂µϕi.
The natural expectation would be that gradients behave
like pixels, just as it is when relighting and adaptation are
constant in space.

This suggests the following idea: If we assume that the
usual von Kries adaptation to relighting transform

�F → eKiϕi �F (8)

corresponds in the visual system to perceptual gradient
adaptation transform

Aµ → Aµ + Ki∂µϕi, (9)

then the perceived gradient would transform during adap-
tation multiplicatively by eKiϕi , same as the pixels. It is
natural to assume that changing lighting would change the
state of adaptation. Equations (8) and (9) give us the exact
expressions for that process of adaptation, consistent with
the model. This is a new result, which can be considered
a contribution to Retinex theory of adaptation.

Note that this process automatically takes place for trans-
formations of lighting conditions that are constant across
the image, and are discounted by the visual system. The
above condition (9) ensures that this same mechanism would
also work for the gradient when the relighting transform
is not constant across the image. In other words, (8) and
(9) lead to the right adaptation transform for the perceived
gradient

(∂µ−Aµ)�F → (∂µ−Aµ−Ki∂µϕi)eKiϕi �F = eKiϕi(∂µ−Aµ)�F .
(10)

After adaptation (to a given relighting), the expression for
the perceptual gradient acting on the image is transformed
into adapted perceptual gradient acting on the adapted im-
age, which is equal to von Kries-type adaptation of the
original perceived gradient. Adaptation to the relighting
is such that the perceived gradient is always transformed
by the same von Kries matrix as the pixels themselves. In
this way the visual system discounts not only for uniform
relighting, but also for shading/shadows and other lighting
conditions changing across the image.
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This result extends the Retinex theory model’s descrip-
tion of relighting objects of piecewise constant reflectance
to the more general case of relighting images of arbitrary
changing reflectance or perceived gradient.

Note also that in our model Aµ is not restricted to such
values that can be represented by simple adaptation to a
given image Ki∂µϕi. We believe that Aµ can be more
general: Human vision adapts to the perceived gradient
in the image, not to the true gradient. Perceived gradients
can be modified from their true values by different factors,
including nonlinearity and semantic adaptation. In other
words, we can potentially observe in the real world gra-
dients that can not be integrated into an image, and this
could lead to a state of adaptation with unrestricted Aµ.

4. SCRATCH REMOVAL

This section will describe one specific application of the
above lighting/adaptation theory.

Relighting an image differently at different pixels is a pow-
erful operation, because any change to an image can be de-
scribed in terms of relighting. We can model changes of
lighting that are constant throughout the image, smoothly
graduated, or widely different between one pixel and its
neighbors. Relighting is described by a group: Given an
arbitrary transformation, we can always model a transfor-
mation to undo it. In this section, we present one applica-
tion of the lighting/adaptation theory above.

4.1. Harmonic Reconstruction

Often in images there are unwanted elements/defects like
wires, scratches, or wrinkles (in human faces). Removing
them, also known as Inpainting [3], is a desirable feature
for many applications.

Consider the noisy image similar to the one in Figure 5,
courtessy of Russell Williams. If we zoom in the small
rectangle at the top, we see a lot of detail, including a
scratch (Figure 6). One intuitive approach to fixing the
scratch is to reconstruct the image surface for each chan-
nel in the defective area as a harmonic function F (x, y),
i.e. solution of the Laplace equation, with Dirichlet bound-
ary conditions.

�F = 0 (11)

In this paper � denotes the Laplacian on the Euclidean
plane. This solution is continuous everywhere, including
at the boundary.

Figure 5: Noisy picture (basilica San Marco, Venice).

A simple way to solve the Laplace equation in a given
area with Dirichlet boundary conditions is to iterate with
the following kernel (divided by 4):

⎛
⎝ 0 1 0

1 0 1
0 1 0

⎞
⎠

Each iteration reads from a 3 × 3 pixel area, adds up the
pixel values as described by the kernel to calculate the av-
erage value, then writes it to the central pixel. We need to
write only in the selected area, while sampling from out-
side the boundary when part of the kernel covers outside
pixels. See [5] for faster numerical methods.

Further extensions of this approach to higher order Laplace-
type PDEs are possible if we use the appropriate kernel.
They can be designed to have both continuous solution
and continuous derivatives at the boundary, thus fitting
better to the original image [2].

4.2. The Problem with Reconstruction

Figure 6 shows the result of the above reconstruction of
the three individual color channels on a fragment of a
noisy image. Film grain and other artifacts in the image
are not appropriately matched in the reconstructed area.

Figure 7 presents the same image fixed with the Photo-
shop Healing Brush. Intuitively, the problem solved is
– reconstruction of the image surface by a Laplace-type
equation which has embedded in it specific structure, so
that the new surface is no longer smooth, but matches the
surroundings in appearance. Jumping ahead, this structure
is the connection (covariant derivative) extracted from an-
other area of the image.
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Figure 6: Harmonic reconstruction of image on the left.

Figure 7: Healing Brush reconstruction of image on the
left.

A simple way to reconstruct the area of a scratch in a color
image (Figure 6) is to replace defective pixels with a so-
lution of the Laplace equation. This is equivalent to mini-
mizing the energy expression

∫
∂µFi∂µFidxdy (12)

in the selected area, where we replace the ’defective’ pix-
els with pixels representing smallest sum of gradients squared.

This result is not perfect. Obviously, we want not just a
smooth fill in, but a fill in with variations similar to those
in the surrounding image areas. Reconstuction not having
the right texture is a problem.

Let’s also notice another problem: (12) implies the wrong
image model – color valued function. The image has to be
a section in a fubre bundle, not a function. The approach
proposed next fixes both problems at the same time.

4.3. Deriving the equation

As a rule, the surrounding image is not smooth, measured
by pixel values. It has certain texture. However, this tex-
ture changes smoothly in the sense that each small area
is consistent with the other areas. We would like to think
of a model visual system, perfectly adapted to all image
variations (noise, texture) in some representative for this
image area. For example it could be film grain or variable
shading due to lighting a rough surface like paper or a hu-
man face.

We would like to consider such variations and a visual sys-
tem adapted to them. For such a visual system the image
is perfectly smooth: Adapted gradient (covariant deriva-
tive) is zero because the adapted visual system discounts
for the changes.

Now we take that adapted visual system and direct it to
the defective area that needs ’healing’. Again we want to
replace the pixels with a solution that has minimal sum
of the adapted gradients squared (12). In other words, we
want to minimize the energy

∫
(δj

i∂µ − Aj
iµ)Fj(δk

i∂µ − Ak
iµ)Fkdxdy (13)

where Aµ represents adaptation from the previous area.
Note that (13) implies that the image is a section in the
color bundle, and adapted gradients are connections. The
Euler-Lagrange equation minimizing this energy is

�Fi = (∂µAj
iµ + Ak

iµAj
kµ)Fj . (14)
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If we choose Aµ to be “pure adaptation to an image”, cor-
responding to group parameters ϕn (compare with (9)),

Aj
iµ = Kj

in∂µϕn. (15)

Using the expression (which can be verified by simple dif-
ferentiation)

�eKnϕn = (Kn�ϕn+Kn∂µϕnKm∂µϕm)eKiϕi , (16)

(14), (15) can be simplified into

��F = (�eKnϕn)e−Kmϕm �F (17)

which can be written in a more compact form

��F = (�φ)φ−1 �F (18)

using the expression for the von Kries group element φ =
eKnϕn . That’s the most general reconstruction or Healing
Brush equation.

4.4. One single channel

It may be more intuitive to derive the equation in the sim-
ple case of one single channel or a grayscale image F .
Also the result is not significantly different. Equation (18)
becomes:

�F = F�G/G, (19)

where G is the sampled image. (19) can be independently
derived from the energy

I =
∫

(∂µ − Aµ)F (∂µ − Aµ)Fdxdy, (20)

the Euler-Lagrange equation for which is:

�F = A2F + ∂µAµF. (21)

Here Aµ is extracted from the adaptation area, in which
we require that the section represented by G is horizontal,
i.e. – complete adaptation to the image (∂µ − Aµ)G = 0
or:

Aµ = ∂µG/G. (22)

In other words, the connection is extracted from the adap-
tation area and used for the reconstruction (healing) pro-
cess. This gives us the grayscale healing equation (19).

Note:
Here it is easier to see the meaning of “general Aµ” dis-
cussed above: The vector field Aµ does not have to be gra-
dient of a scalar field (describing image). In (22) Aµ =
∂µ ln G, but in general it could be any other vector field

and then the equation to solve would be (21) instead of
(19). A possibility of adaptation described by a non-gradient
adaptation field has not been discussed in the literature be-
fore. This new idea involves grayscale images that can not
be represented as functions, but are known only by their
gradients. (Those images sometimes can be represented
locally, but not globally.) We believe that the visual sys-
tem sometimes actually perceives such images in the real
world. A potential area of furure research would be how
to simulate them with traditional imaging devices in order
to achieve similar perception based on inducing appropri-
ate state of adaptation.

4.5. Quality of Result and Healing Brush Algorithm

Assuming variations in the images are ’small’ relative to
the typical pixel value in the image, we can approximate
F/G by a smooth function, or even a constant. This ap-
proximation is very close to the result in Poisson editing
[4]. It means that we simply multiply the right hand side
of Poisson equation by a constant which scales variations
appropriately to achieve better fidelity.

This improvement in quality is especially clear when cloning
from bright to dark, or from dark to bright areas. In other
words, the main difference between our healing equation
and Poisson editing is that we produce perceptually better
results in cases of change in lighting conditions like shad-
ows and so on.

Also, our theoretical approach reveals the deeper meaning
of the ’guidance’ field in [4], which is related to the con-
nection (adapted gradient).

In this paper we work only with the Laplace equation but
the idea of using connections (covariant derivatives) with
the appropriate energy expression can be extended to any
PDE, second order or higher.

For the sake of speed and simplicity, we would ignore the
details of the rigorous result, and define an easy Healing
algorithm, treating each channel separately:

(1) Use as input the difference function H in = F − G.
(2) Reconstruct Hin (solving PDE) using difference bound-
ary conditions. Result of reconstruction is R.
(3) Define healed image H as H = R + G.

The result H of this algorithm is a solution of �H = �G
with appropriate boundary conditions.

This algorithm is simpler and faster by solving Laplace
instead of Poisson equation. Also, it can be immediately
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converted into similar biharmonic or higher order algo-
rithm by using bi-Laplace (or other PDE) solver at step
(2). As discussed in another paper[2], it has better smooth-
ness properties at the boundary. We have implemented
this biharmonic or “bi-Poisson” algorithm for the Healing
Brush in Photoshop [1, 2].

In the general case (19) or (21) we need to solve Poisson
or “bi-Poisson” equation.

5. HDR COMPRESSION AS RELIGHTING

This section describes another specific application of our
lighting/adaptation theory.

A central problem in dealing with high dynamic range im-
ages (HDR) is how to display them on a low dynamic
range device, like a monitor. Just like scratch removal, the
problem of HDR compression can be expressed in terms
of relighting. As an example of how our method works,
we will reproduce the results of one of the best approaches
[17] starting from first principles.

Here is a short review of the algorithm of [17]: Treat only
the luminance, F . Calculate logarithm f = lnF ; find the
gradient of it; attenuate big gradients to reduce dynamic
range; then integrate back to get a real image in log space;
and finally take the exponent to produce the output lumi-
nance.

The logarithm of luminance is used simply because hu-
man visual system is approximately logarithmic, and not
based on theoretical reasons. Our approach will provide
theoretical justification of the use of logarithm.

Minimize the energy written in log-space

∫
(∂µf − Aµ)(∂µf − Aµ)dxdy (23)

to produce the Poisson equation

�f = ∂µAµ (24)

for the logarthm of luminance, where A is the attenuated
gradient of the log of the input. “Integrate back” in the
above algorithm means “solve (24)”. Without attenuation,
(24) would produce seemless cloning from any image G
if Aµ = ∂µG/G. We can also write g = lnG and then

�f = �g. (25)

In our approach, the energy expression is written based on
requirements for adaptation invariance. In other words,

a multiplicative shadow/relighting G on the source image
produces an additive to Aµ term in such a way that the new
output image is multiplied by the same shadow/relighting.
This simple requirement for energy invariance produces
the result (24), (25), automatically placed in log-space.
The transforms are (see also (8), (9)):

F → GF (26)

Aµ → Aµ +
∂µG

G
. (27)

The simplest energy expression that has the above invari-
ance is

∫
(∂µ − Aµ)F (∂µ − Aµ)F

F 2
dxdy. (28)

If we substitute A from (22), the Euler-Lagrange equation
for this energy would be:

� ln F = � ln G, (29)

which is exactly (25).

Because of the logarithm in our result, we produce exactly
(24), the same as [17]. We did not depend on intuition to
motivate this use of log space; instead, it comes directly
from our mathematical model based on first principles.
This can be seen as theoretical motivation for using log
space in any visual system.

Note that A is adaptation vector field, and it can be more
general than gradient of a function. We adapt to what we
see, and not to the pixel values of energy illuminating the
retina. Due to these adaptation effects, what we see is not
always representable in pixels or as a picture.

6. CONCLUSION AND FUTURE WORK

The success of our approach in the case of the Healing
Brush and HDR suggests the following theoretical idea:
In many cases of image processing it is appropriate to
treat the image as a section in a fibred space, rather than
as a function. A connection can be chosen to represent
adaptation or perceptual derivative. In this new formal-
ism we need to use expressions for the energy based on
connections (covariant derivatives) in relation to any PDE
or other image processing algorithm. This approach is
not limited just to the Laplace equation, scratch removal
or HDR, but – applicable to any relighting or perception-
based application.
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