
 

  
 
 
 

ADOBE TECHNICAL REPORT
 

Light Field Camera 
Design for Integral 
View Photography 
 
Todor Georgeiv and Chintan Intwala 
Adobe Systems Incorporated 
345 Park Ave, San Jose, CA 95110 
tgeorgie@adobe.com 

Abstract

This paper introduces the matrix formalism of optics as 
a useful approach to the area of “light fields”. It is 
capable of reproducing old results in Integral 
Photography, as well as generating new ones. 
Furthermore, we point out the equivalence between 
radiance density in optical phase space and the light 
field. We also show that linear transforms in matrix 
optics are applicable to light field rendering, and we 

extend them to affine transforms, which are of special 
importance to designing integral view cameras. Our 
main goal is to provide solutions to the problem of 
capturing the 4D light field with a 2D image sensor. 
From this perspective we present a unified affine optics 
view on all existing integral / light field cameras. Using 
this framework, different camera designs can be 
produced. Three new cameras are proposed.

Figure 1: Integral view of a seagull



 

 Adobe Technical Report

Table of Contents 

Abstract 1 
1. Introduction 3 

1.1 Radiance and Phase Space 3  
1.2 Structure of this paper 3 

 

2. Linear and Affine Optics 4 
2.1. Ray transfer matrices 4 
2.2. Affine optics: Shifts and Prisms 4 

3. Light field conservation 5 
4. Building blocks of optical 
system 5 

4.1."Camera"  5 
4.2."Eyepiece"  6 
4.3.Combining eyepieces  6 

5. The art of light field camera 
design 6 

5.1. Integral view photography  6 
5.2. Camera designs  7 

6. Results from our light field 
cameras 9 
 

Conclusion 13 
References  13 
 



 Adobe Technical Report3

Introduction 

Linear (Gaussian) optics can be defined as the use of 
matrix methods from linear algebra in geometrical 
optics. Fundamentally, this area was developed 
(without the matrix notations) back in the 19-th 
century by great minds like Gauss and Hamilton. 
Matrix methods became popular in optics during the 
1950-ies, and are widely used today [1], [2]. In those old 
methods we recognize our new friend, the Light Field.  

We show that a slight extension of the above ideas to 
what we call affine optics, and then a transfer into the 
area of computer graphics, produces new and very 
useful practical results. Applications of the theory to 
designing “Integral” or “light field” cameras are 
demonstrated.  

1.1 Radiance and Phase Space 

The radiance density function (or “Light field'' - as it is 
often called) describes all light rays in space, each ray 
defined by 4 coordinates [3]. We use a slightly modified 
version of the popular “2-plane parameterization”, 
which describes each ray based on intersection point 
with a predefined plane and the two angles / directions 
of intersection. Thus, a ray will be represented by space 
coordinates, 

1 2,q q  and direction coordinates, 

1 2,p p which together span the phase space of optics 
(See Figure 2). In other words, at a given transversal 
plane in our optical system, a ray is defined by a 4D 
vector, 

1 2 1 2( , , , )q q p p , which we will call the light field 
vector. 

 

 

These coordinates are very similar to the traditional 
( , , , )s t u v  coordinates used in light field literature. 
Only, in our formalism a certain analogy with 
Hamiltonian mechanics is made explicit. Our variables 
q and p play the same role as the coordinate and 
momentum in Hamiltonian mechanics. In more detail, 
it can be shown that all admissible transformations of 
the light field preserve the so called symplectic form 

0 1
1 0

⎛ ⎞
⎜ ⎟−⎝ ⎠

, same as in the case of canonical transforms 

in mechanics [4]. 

In other words, the phase space of mechanics and “light 
field space” have the same symplectic structure. For the 
light field one can derive the volume conservation law 
(Liouville's theorem) and other invariants of mechanics 
[4]. This observation is new to the area of light fields. 
Transformations of the light field in an optical system 
play a role analogous to canonical transforms in 
mechanics. 

1.2 Structure of this paper 

Next section 2 shows that: (1) A thin lens transforms 
the light field linearly, by the appropriate ray transfer 
matrix. (2) Light traveling a certain distance in space is 
also described by a linear transformation (a shear) - as 
first pointed out in a paper [5] by Durand at. al. (3) 
Shifting a lens from the optical axis or inserting a prism 
is described by the same affine transform. This extends 
linear optics into what we call affine optics. These 
transformations will be central to future “light field'' 
image processing, which is coming to replace 
traditional image processing.  

Section 3: Transformation of the light field in any 
optical device, like telescope or microscope, has to 
preserve the integral of light field density. Any such 
transformation can be constructed as a product of only 
the above two types of matrices, and this is the most 
general linear transform for the light field.  

Section 4 defines a set of optical devices, based on the 
above three transforms. Those optical devices do 
everything possible in affine optics, and they will be 
used as building block for our integral view cameras. 
The idea is that since those building blocks are the most 
general, everything that is possible in optics could be 
done using only those simple blocks. 

 Section 5 describes the main goal of Integral View 
Photography, and introduces several camera designs 
from the perspective of our theory. Three of those 
designs are new. Section 6 shows some of our results. 

 

Figure 2: A ray intersecting a plane 
perpendicular to the optical axis.  
Directions (angles) of intersection  
are defined as derivatives of q1 and 
q2 with respect to t. 
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2. Linear and Affine Optics 

 

This section introduces the simplest basic transforms of 
the light field. They may be viewed as the geometric 
primitives of image processing in light space, similar to 
rotate and resize in traditional imaging in the plane. 

2.1. Ray transfer matrices 

(1) Light field transformation by a lens: 

Just before the lens the light field vector is ( , )q p . Just 
after the lens the light field vector is ( ', ')q p . The lens 
doesn't shift the ray, so 'q q= . Also, the transform is 
linear. The most general matrix representing this type 
of transform would be:  

                       ' 1 0
(1)

' 1
q q
p a p

⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
 

Note: As a matter of notations, 1
fa −=  where f  is 

called focal length of the lens. Positive focal length 
produces negative increment to the angle, see Figure 3. 

 (2) Light field before and after traveling a distance T  

 (T  stands for “travel” -- as in [5]), who first introduced 
this “shear” transform of light field traveling in space.) 
The linear transform is: 

                       ' 1
(2)

' 0 1
q T q
p p

⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
 

where the bottom left matrix element 0  specifies that 
there is no change in the angle p  when a light ray 
travels through space. Also, positive angle p produces 
positive change in q , proportional to the distance 
traveled T . 

2.2. Affine optics: Shifts and Prisms 

In this paper we need to slightly extend traditional 
linear optics into what we call affine optics. 

This is done by using (in the optical system) additive 
elements together with the above matrices. 

Our motivation is that all known light field cameras and 
related systems have some sort of lens array, where 
individual lenses are shifted from the main optical axis. 
This includes Integral Photography [6], the Hartmann-
Shack sensor [7], Adelson's Plenoptic camera [8], 3D 
TV systems [9], [10], the light field - related [3] and the 
camera of Ng [11].  We were not able to find our 
current theoretical approach anywhere in the literature. 

One such “additive” element is the prism. By definition 
it tilts each ray by adding a fixed angle of deviationα . 

Expressed in terms of the light field vector the prism 
transform is: 

                              ' 0
(3)

'
q q
p p α

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

One interesting observation is that the same transform, 
in combination with lens refraction, can be achieved by 
simply shifting the lens from the optical axis. 

If the shift is s, formula (1) for lens refraction would be 
modified as follows: 

Convert to lens-centered coordinates by subtracting s . 
Apply linear lens transform. Convert to original 
coordinates by adding back s, 

which is simply: 

1

1 0'
(4)

1' 0f

q q s s
p p

⎛ ⎞ −⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

Figure 3: A lens transform of the  
light field. 

Figure 4: Space transfer of light.
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Final result:   “Shifted lens = lens + prism” 

This idea will be used later in section 5.2 

Figure 5 illustrates the above result by showing how you 
can build a prism with variable angle of deviation 

s
fα =  from two lenses of focal length f and f−  

shifted by a variable distance s  from one-another. 

 

 

3. Light field conservation 

 

The light field (radiance) density is constant along each 
ray. The integral of this density over any volume in 4D 
phase space (light field space) is preserved during the 
transformations in any optical device. This is a general 
fact that follows from the physics of refraction, and it 
has a nice formal representation in symplectic geometry 
(see [12]).  

In our 2D representation of the light field this fact is 
equivalent to area conservation in ( , )q p  - space, which 
will be shown next: 

Consider two rays, 1 1( , )q p  and
2 2( , )q p . After the 

transform in an optical system, the rays will be 
different. The signed area between those rays in light 
space (the space of rays) is defined by their cross 
product. In our matrix formalism the cross product 
expression for the area will be: 

        2
1 2 2 1 1 1

2

0 1
( ) . (6)

1 0
q

q p q p q p
p

⎛ ⎞⎛ ⎞
− = ⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

 

After transformation in the optical device represented 
by matrix M , the area between the new rays will be  

           2
1 1

2

0 1
( ) , (7)

1 0
T q

q p M M
p

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠

 

where TM is the matrix transposed to M . The 
condition for expressions (6) and (7) to be equal for any 
pair of rays is: 

                0 1 0 1
. (8)

1 0 1 0
TM M
⎛ ⎞ ⎛ ⎞

=⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
 

This is the condition for area conservation. In the 
general case, a similar expression describes 4D volume 
conservation for the light field. The reader can check 
that (1) the matrix of a lens and (2) the matrix of a light 
ray traveling distance T  discussed above both satisfy 
this condition. 

Further, any optical system has to satisfy it, as a product 
of such transforms. It can be shown [12] that any linear 
transform that satisfies (8) can be written as a product 
of matrices of type (1) and (2).  

The last step of this section is to make use of the fact 
that since light field density for each ray before and 
after the transform is the same, the sum of all those 
densities times the infinitesimal area for each pair of 
rays must be constant. In other words, integral of the 
light field over a given area (volume) in light space is 
conserved during transforms in any optical device. 

 

4. Building blocks of our 

optical system 

 

We are looking for simple building blocks for optical 
systems (light field cameras), that are most general. In 
other words, they should be easy to understand in terms 
of the mathematical transformations that they perform, 
and at the same time they should be general enough so 
they do not exclude useful optical transforms. 

According to our previous section, in the space of affine 
optical transforms, everything can be achieved as 
products of the matrices of equations (1), (2) and 
prisms. However, those are not simple enough. That's 
why we define other building blocks as follows: 

 

4.1. “Camera ” 
 

1

1 0 0'
(5)

1' s
f f

q q
p p

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

Figure 5: A variable angle prism.
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This is not the conventional camera, but is closely 
related to it by adding a field lens. With this lens the 
camera transform becomes simple:  

                         
1

0
. (9)

0 m

m
M

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 

First, light travels a distance a  from the object to the 
objective lens. This is described by a transfer matrix 

aM . Then it is refracted by the objective lens of focal 
length f , represented by transfer matrix 

fM . In the 

end it travels to the image plane a distance b , 
represented by bM . The full transform, found by 
multiplication of those three matrices is: 

        
1

1
. (10)

1

b ab
f f

b f a a
f f

a b
M M M

− − +⎛ ⎞
= ⎜ ⎟⎜ ⎟− −⎝ ⎠

 

The condition for focusing on the image plane is that 
the top right element of this matrix is 0 , which is 
equivalent to the familiar lens equation: 

                          1 1 1 . (11)
a b f
+ =  

Using (11), our camera transfer matrix can be 
converted into a simpler form: 

                         
1

0
. (12)

b
a

a
f b

−⎛ ⎞
⎜ ⎟− −⎝ ⎠

 

We also make the bottom left element 0  by inserting a 
so called “field lens'' (of focal length bf

aF = ), just before 
the image plane: 

        
11

01 0 0
. (13)

1 0

b b
a a

a a
f bF b

−⎛ ⎞ −⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟ − −− −⎝ ⎠ ⎝ ⎠⎝ ⎠

 

This matrix is diagonal, which is the simple final form 
we wanted to achieve. It obviously satisfies our area 
conservation condition, which the reader can easily 
verify. The parameter b

am −=  is called “magnification” 
and is a negative number. (Cameras produce inverted 
images.)  

 

4.2. “Eyepiece ” 

This element has been used as an eyepiece (ocular) in 
optics, that's why we give it the name. It is made up of 
two space translations and a lens.  First, light rays travel 
a distance f , then they are refracted by a lens of focal 

length f , and in the end they travel a distance f . The 
result is: 

    
1 1

1 0 01 1
. (14)

1 00 1 0 1f f

ff f
− −

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
  

This is “inverse diagonal” matrix, which satisfies area 
conservation. It will be used in section 5.2 for switching 
between q  and p  in a light field camera. 

 

4.3. Combining eyepieces 

Inversion: 

Two eyepieces together produce a “camera” with 
magnification -1: 

                              1 0
(15)

0 1
−⎛ ⎞
⎜ ⎟−⎝ ⎠

 

An eyepiece before and after a variable space T  and 
then inversion produces a lens of variable focal 
length 2f

TF = : 

2
1 1

1 00 01
. (16)10 00 1 T

f f f

f fT ⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞
− = ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟−− −⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

   

By symmetry, same combination of eyepieces with a 
lens produces space translation 2f

FT =  without using 
up real space! Devices corresponding to the above 
matrices (9), (14), (15), (16) together with shifts and 
prisms are the elements that can be used as “building 
blocks” for our light field cameras. 

Those operators are also useful as primitives for future 
optical image processing in software. They are the 
building blocks of the main transforms. Corresponding 
to geometric transforms like Resize and Rotate in 
current image processing. 

 

5. The art of light field 

camera design 

 
5.1. Integral view photography 

We define Integral View Photography as a 
generalization from several related areas of research. 
These include Integral Photography [6], [9] and related, 
Adelson's “Plenoptic” camera [8], a number 3D TV 
systems ([10] and others), and the “Light Field” camera 
of Ng at. al. [11]. 
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In our approach we see conventional cameras as 
“integration devices’’ which integrate the optical field 
over all points on the aperture into the final image. This 
is already an integral view camera. It achieves effects 
like refocusing onto different planes and changing 
depth of field, commonly used by photographers. The 
idea of Integral View photography is to capture some 
representation of that same optical field and be able to 
integrate it afterwards, in software. In this way, the 
captured “light field”, “plenoptic” or “holographic” 
image potentially contains the full optical information, 
and much greater flexibility can be achieved. 

(1) Integration is done in software, and not 
mechanically. 

(2) Instead of fixing all parameters in real time, the 
photographer can relax while taking the picture, and 
defer focusing, and integration in general, to post 
processing in the dark room. Currently only color and 
lightness are done as post processing (in Aperture and 
Light Room). 

(3) Different methods of integrating the views can be 
applied or mixed together to achieve much more than 
what is possible with a conventional camera. Examples 
include focusing on a surface, “all in focus” and others. 

(4) Also, more power is gained in image processing 
because now we have access to the full 3D  information 
about the scene. Difficult tasks like refocusing become 
amazingly easy. We expect tasks like deblur, object 
extraction, painting on 3D surfaces, relighting and 
many others to become much easier, too.  

 

5.2. Camera designs 

We are given the 4D light field (radiance density 
function), and we want to sample it into a discrete 
representation with a 2D image sensor. The approach 
taken is to represent this 4D density as a 2D array of 
images. Different perspectives on the problem are 
possible, but for the current paper we would choose 
to discuss it in the following framework. Traditional 
Integral photography uses an array of cameras 
focused on the same plane, so that each point on that 
plane is imaged as one pixel in each camera. These 
pixels represent different rays passing at different 
angles through that same point. In this way angular 
dimensions are sampled. Of course, the image itself 
samples space dimensions, so we have a 2D array of 
2D arrays. 

The idea of compact light field camera design is to put 
all the optics and electronics into one single device. We 
want to make different parts of the main camera lens 
active separately, in the sense that their input is 

registered independently (but on the same sensor!), as if 
coming from different cameras. This makes the design 
compact and cheap to manufacture.  

First design:  

Consider formula (5). With this in mind, Figure 6 in 
which each lens is shifted from the optical axis, would 
be equivalent to adding prisms to a single main lens. See 
Figure 7. This optical device would be cheaper to 
manufacture because it is made up of one lens and  

multiple prisms, instead of multiple lenses. Also, it's 
more convenient for the photographer to use the 
common controls of one single lens, while effectively 
working with a big array of lenses. 

 

We believe this design is new. Based on what we call 
affine optics (formula (5)), it can be considered a 
reformulation of the traditional “multiple cameras” 
design of integral photography. 

Figure 6: An array of cameras  
used in integral photography for 
capturing the light field. 

Figure 7: Array of prisms design.
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In traditional cameras all rays from a far away point 
are focused into the same single point on the sensor. 
This is represented in Figure 7, where all rays coming 
from the lens are focused into one point. We want to 
split rays coming from different areas of the main 
lens. This is equivalent to a simple change of angle, 
so it can be done with prisms of different angles of 
deviation placed next to the main lens, at the 
aperture. 

Second design: 

This approach was invented by Adelson-Wang [8], and 
recently used by Ng et. al [11]. We would like to 
propose an interesting interpretation of their design. It 
is a traditional camera, where each pixel is replaced by 

an eyepiece (E) with matrix of type 0 1
1 0

⎛ ⎞
⎜ ⎟−⎝ ⎠

, and 

sensor (CCD matrix) behind it. The role of the eyepiece 
is to switch between coordinate and momentum 
position-direction) in optical phase space (light field). 
As a result different directions of rays at a given 
eyepiece are recorded as different pixels on the sensor 
of that eyepiece. Rays coming from each area of the 
main lens go into different pixels at a given eyepiece. 
See Figure 8, where we have dropped the field lens for 
clarity (but it should be there at the focal plane of the 
main camera lens for the theory to be exact). In other 
words this is the optical device “camera” of section 4.1, 
followed by an array of eyepieces (section 4.2). 

Figure 9 shows two sets of rays, and their path in the 
simplified version of the system - without field lens. 

Our next step will be to generalize designs (1) and (2) 
by building cameras equivalent to them in the optical 
sense. Using formula (5), we can replace the array of 
prisms with an array of lenses. See Figure 10. We get 
shift up in angle, same as with prisms. Total inverse 
focal length will be sum of inverse focal length of main 
lens and individual lenses.  

A very interesting approach would be to make the array 
of lenses or prisms external to the camera: With 
positive lenses we get an array of real images, which are 
captured by a camera focused on them. Figure 11. 

Figure 8: Array of eyepieces 
generating multiple views. 

Figure 9: More detail about 
Figure 8. 

Figure 10: Lenses instead  
of prisms in Figure 7. 

Figure 11: Multiple lenses  
creating real images. 
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With negative lenses we get virtual images on the other 
side of the main lens. Rays are shifted down on Figure 
12, but virtual images are shifted up. This design is not 
possible as internal for the camera because images are 
virtual. We believe it is new. 

If all negative lenses had same focal length as the main 
lens (but opposite), we would get a device equivalent to 
an array of prisms. See Figure 5. This works perfectly 
well, but with a large number of lenses the field of view 
is too small. In order to increase it, we need the focal 
length of the array of lenses to be small. 

Another problem is the big main lens, which is heavy 
and expensive. The whole device can be replaced with 
an array of lens-prism pairs, shown in Figure 13. This is 
another new design. See a picture of this array of 19 
negative lenses and 18 prisms, Figures 14. 

Most of our results are produced with a camera with the 
design of Figure 12, with an array of  20 lenses cut into 
squares so they can be packed together with the least 
loss of pixels. A picture of our camera is shown in 
Figure 15. One of the datasets obtained with it is shown 
reduced in Figure 16.  

 

 

 

 

6. Results from our light 

field cameras 

 

In terms of results, in this paper we chose to make our 
only goal showing that our cameras work. Making use 
of the advantages of the light field in image processing, 

Figure 12: Multiple lenses  
creating virtual images. 

Figure 13: Lenses and prisms.

Figure 14: Picture of our hexagonal 
array of lenses and prisms. 

Figure 15: Working model of the 
camera in Figure 12, with 2 positive 
lenses and an array of 20 negative 
lenses. 
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and achieving all the improvements and amazing effects 
is too broad task - and deferred to future works.  

The only effect that we are going to demonstrate will be 
refocusing. It creates the sense of 3D and clearly shows 
the power of our new camera. Also, in this way we have 
a chance to compare our new results against the current 
state of the art in the field, the camera of Ng at. al. [11]. 

 

With the square lens array we are able to obtain 20 
images from 20 different viewpoints. See Figure 16. 
Firstly, one image is chosen as a base image with which 
all the rest of the images are registered. Only certain 
region of interest (ROI) in the base image is used for 
matching with the rest of the images. An example of 
ROI is shown in Figure 17. This registration process 
yields a 2D shift ( , )i i iS dx dy= for an image 

iI  that will 
shift the region of interest from 

iI  to align it with the 
base image. Since for registration we consider only the 
region of interest, we compute a normalized cross-
correlation coefficient ( , )ic x y  between the appropriate 
channel of the ROI and 

iI  at every point of
iI .  

The location that yields the maximum value of the 
coefficient ( , )ic x y is used to compute the shift. This 
yields an array of shifts vectors 

1 1 2 2 19 19( , ), ( , ), , ( , )dx dy dx dy dx dyK corresponding to 
each image

iI , for a given ROI. In order to obtain an 
image, like the one in Figure 18, we simply blend 20 
shifted images equally. Because of the fact that objects 
at equal depth have equal shifts,  this produces an image 
with objects in focus that lie in the same depth plane as 
the objects in ROI. Figure 18 and 20 show the mixture 
of appropriately shifted images. Note that the edges of 
those images are left unprocessed in order to show the 
shifts more clearly. Now, in order to obtain various 
intermediate depth planes, like in Figure 19, we need 

two sets of shifts; one is for foreground 
fS  and one is 

for background bS . 

As a result, the intermediate depth plane is obtained by 
linear interpolation 

                 ( ), (17)D f b fS S D S S= + ⋅ −   

where the depth D  is between 0 and 1. 

Another example of refocusing after taking the picture 
is demonstrated in our seagull images. A photographer 
wouldn't have the time to refocus on birds while they 
are flying, but with integral view photography this can 
be done later in the dark room.  Figure 21 is obtained 
for D =0, Figure 22 is obtained for D =0.65 and Figure 
23 is obtained for D =1. 

As seen from the results, the parallax among the 20 
images and the overall range of depths of the scene are 
responsible for the believability of the resulting images. 
The larger the parallax, the more artifacts are produced 
in the final image. For example, one can compare the 
two images focused on the foreground:  

Figure 18 and Figure 21. The problem in the later case 
can be solved by generating images from virtual 
intermediate viewpoints using view morphing or other 
Vision algorithms.  

Using a different camera design (not described in this 
paper) which is able to capture 100 images 
corresponding to 100 slightly shifted viewpoints, we 
were able to refocus much more precisely and with 
minimal artifacts. Refer to Figure 24 and Figure 25 for 
the obtained results. Notice that the scene has a large 
variation in depth (comparable to Figure 21) and yet 
the results are much smoother. 

Figure 26 shows one example of refocusing on the 
foreground using 3-view morphing, where 144 images 
have been generated from the original 20. Artifacts are 
greatly reduced, and there is no limit to the number of 
views (and level of improvement) that can be achieved 
with this method.  

Figure 16: A set of 20 images  
obtained with our camera. 
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Figure 17: Rodin’s Burghers (region
of interest). 

Figure 18: Rodin’s Burghers at 
depth 0, closest to camera. 

Figure 19: Rodin’s Burghers at 
depth 0.125. 

Figure 20: Rodin’s Burghers at 
depth 1. 
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Figure 21: Seagulls at depth 0. Figure 22: Seagulls at depth 0.65

Figure 23: Seagulls at depth 1.

Figure 24:  Our 100 view light  
field focused at depth 0. 

Figure 25: Our 100-image light 
field focused at depth 1. 

Figure 26: Our 20-image light field 
focused at the head of Scott. Result 
obtained from 144 synthetic images 
generated using view morphing. 
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Conclusion 

In this paper we used a new approach to the light field, 
based on linear and affine optics. We constructed 
simple transforms, which can be used as building blocks 
of  integral view cameras.  Using this framework, we 
were able to construct the main types of existing light 
field / integral cameras and propose three new designs. 

Our results show examples of refocusing the light field 
after the picture has been taken. With a 16 mega pixel 
sensor our 20-lens camera (Figure 12) produces 
refocused output image of 700X700.  View morphing 
approach to improving the quality of the final images is 
discussed and shown to be practical. 

We would like to thank Colin Zheng from Univ. of 
Washington for help with producing Figure 26. We 
would also like to thank Gavin Miller for discussions, 
and for providing a very relevant reference [13]. 
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