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Poisson cloning can be viewed as an
approximation to covariant cloning.

Outline of our theory:







Thanks to Jan Koenderink
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Retina / Cortex Adaptation

e The image is just a record of pixel values.
 \We do not see pixel values directly.
* What we see is an illusion generated from

the above record through internal adaptation.
We can not compare pixels.



Models of Image Space:



(1) Cartesian Product

e Apair (location, intensity)
* Multiple copies of the intensity line.

« \We can compare intensities. The image Is a function
that specifies an intensity at each point.
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(2) Fiber Bundle

» Two spaces and a mapping (vertical projection)

B

Total space E /

y,

E

/

/ Base space B
B

* Fiber is the set of points that map to a single point.
We will use vector bundles, where fibers are vector

spaces.
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Section Iin a Fiber Bundle

* Mapping from base B to total space E

Sections /
L8/

replace g -

functions |7 /

 \We can not compare intensities. Horizontal

projection is not defined. We have forgotten it.

 Perceptually correct model of the image
Image = graph of a section
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Derivatives in a Fiber Bundle

Definition:

Derivative is a mapping from one section to
another that satisfies the Leibniz rule relative
to multiplication by functions:

D.(fo) = (& )0 + [ Dso

In the Cartesian product space this definition is
equivalent to the conventional derivative.
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Derivatives in a Fiber Bundle

If we express a section as a linear combination of some
basis sections

o= Xflo

then the derivative will be:

| g5 |
D.o=D,XY(f'c;) = Z((a—fgf“)ai + f'D.o;)

o o
= D((5-f)oi+ Df A ip0))
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Derivatives in a Fiber Bundle

If we represent the section in terms of the functions
f* that define it in a given basis (not writing the
basis vectors), the last equation can be written as:

H I
D,fi=—fi4+ XA, fI
f aﬂj —I_ _j‘xf

The functions f* are called “color channels” in
Photoshop, and D is called “Covariant Derivative”.

It corresponds to the derivative in the Cartesian
product model.
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The covariant derivative Is a rigorous mathematical tool
for perceptual pixel comparison in the fiber bundle model
of image space. It replaces the conventional derivative of
the Cartesian product model as:

0 0
ox  Ox +4x(x,)
o 0

> "‘Ay(xa.l’)
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- Reconstructing images with the
covariant Laplace equation

ANf+ fdivA+2A -gradf+A-Af =0,
based on adaptation vector field, A.

- Reconstructing surfaces based on gradient field.
Recent work by R. Raskar et. al. Covariant Laplace
should produce better results than Poisson.

How can we know A?
It can be extracted based on the idea of covariantly
constant section, next:
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Assume perceived gradient of image g(Xx, y) Is zero.
This means complete adaptation:

J
(g +Ax(x,))g(x,y) =0

a rd
(5 + Ay(x,y))g(x,y) = 0 Ax,y) =2 gdg

Substitute in covariant Laplace:

VAN rad rad AN rade) - (erad ]
Af _,gradf gradg Lg | (2 g)z(g 8 _o  Covariant

/ ! g g g :
cloning

Af(x,y) =Ag(x,y)  Poisson equation
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Cloning from night to day

Poisson Cloning Covariant Cloning

Thanks to R. Raskar and J. Yu
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Gradient Domain HDR Compression

Changing the lighting conditions. The visual system is
robust. It compensates for the changes in illumination
by adaptation vector field A:

J—9af

gradg
g

Simplest energy invariant to those transforms is:

/ (& +4)0) + (£ + A f)
f2

A— A —

dxdy
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Gradient Domain HDR Compression

0 2 el 2
/ (55 T A2)f)" + ((ay + Ay)f) dedy

fQ
Euler-Lagrange equation for the above energy:
Aln f=Alng

Exactly reproduces the result of the Fattal-Lischinski-
Werman paper. They assume log; we derive log.

Any good visual system needs to be logarithmic!
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Conclusion:

The covariant (adapted) derivative provides

a way to perform perceptual image processing
according to how we see images as opposed to -
how Images are recorded by the camera.

Useful for Poisson editing, inpainting or any PDE,
HDR compression, surface reconstruction from
gradients, night/day cloning, graph cuts, bilateral
and trilateral filters in terms of jet bundles, and
practically any perceptual image editing.




Appendix:
Bilateral interpreted in 3D image space

The image z = f(z,y) Iisadistribution in 3D:
0(z— f(z,y)) or §(nz—Inf(x,y)) -perceptual?

Integrate the following 3D filter expression over z

/6(2: — f(x,y))c(x —u,y —v)s(z — w)drdydz
and evaluate it on the original surface. Result:

Jete —wy - 0)s(Fey) - fv)izdy (1)
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Bilateral

/ax—my—va@mﬂ—fWdemy (1)

Same procedure on the logarithmic expression

/5(1112: —In f(z,y))c(z —u,y —v)s(z — w)dxdydz
produces (using “delta function of function” formula):

/f@@k@_uw—kummyaﬂwwwmw (2)

Now, bilateral filter is exactly expression (2) divided
by expression (1). Paris-Durand paper derives a similar
result (based on intuition) and a speed up algorithm.
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