Image Reconstruction (Comparisons)

Todor Georgiev *Adobe Photoshop*

State of the art in Scratch Removal

- Inpainting (2000)

Poisson Image Editing (2003)
"Poisson Cloning/Blending"
same as Photoshop Healing Brush (2002)

Original

Selection to clone

Poisson Cloning

New selection to clone

Poisson Cloning

Retina / Cortex Adaptation to Illumination

- The image is *just a record* of pixel values.
- We do not see pixel values directly. Adaptation.
- What we see is *an illusion* generated from the above record through internal adaptation of the visual system.

Thanks to Jan Koenderink

Covariant Derivative = Perceptual Derivative

$$\frac{\partial}{\partial x} \rightarrow \frac{\partial}{\partial x} + A_x(x,y)$$

$$\frac{\partial}{\partial y} \rightarrow \frac{\partial}{\partial y} + A_y(x,y)$$

Our covariant Laplace equation:

$$\frac{\triangle f}{f} - 2\frac{gradf}{f} \cdot \frac{gradg}{g} - \frac{\triangle g}{g} + 2\frac{(gradg) \cdot (gradg)}{g^2} = 0$$

Compare this to **Poisson equation**:

$$\triangle f(x,y) = \triangle g(x,y)$$

Both define gradient domain cloning. Which one is better?

Poisson cloning

Covariant cloning

Reconstruction Examples:

Original Damaged Area

Laplace

Poisson

Original

Laplace

Inpainting

Thanks to Guillermo Sapiro and Kedar Patwardhan

"Structure and Texture" Inpainting

Bertalmio – Vese – Sapiro – Osher method

Poisson

Covariant

Laplace

Inpainting

Structure and Texture Inpainting

Poisson

Covariant

Conclusion:

The covariant (adapted) derivative provides a way to perform *perceptual image processing* according to how images are *perceived* as opposed to - how images are *recorded* by a camera. It explicitly takes into account changes of retina sensitivity due to adaptation to illumination conditions.

Covariant (perceived) gradient domain.

Scratch Removal is only one application.

Comparison of different reconstruction equations

$$\triangle f = 0$$

$$\triangle f = \triangle g$$

Directed diffusion
$$\frac{\triangle f}{f} - \frac{\triangle g}{g} = 0$$

$$\frac{\triangle f}{f} - \frac{\triangle g}{g} = 0$$

$$\frac{\triangle f}{f} - \frac{(gradf)^2}{f^2} - \frac{\triangle g}{g} + \frac{(gradg)^2}{g^2} = 0 \qquad \triangle(\ln f - \ln g) = 0$$

$$\triangle(\ln f - \ln g) = 0$$

Covariant Laplace
$$\frac{\triangle f}{f} - 2\frac{gradf}{f}\frac{gradg}{g} - \frac{\triangle g}{g} + 2\frac{(gradg)^2}{g^2} = 0$$
 $\triangle \frac{f}{g} = 0$

$$\triangle \frac{f}{g} = 0$$

$$\nabla^{\perp} f \cdot \nabla \Delta f = 0$$

Textured Inpainting

... too complex to write

Poisson

Covariant Laplace

Inpainting

Thanks to Guillermo Sapiro and Kedar Patwardhan

Covariant Inpainting

Other experiments

Reconstruction is not just "scratch removal"

Conclusion:

The covariant (adapted) derivative provides a way to perform perceptual image processing according to how we see images as opposed to how images are recorded by the camera.

HDR and reconstruction/healing are only 2 of the applications.