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Abstract. We show that conventional Bilateral filtering is equivalent to
normal filtering of a delta function distribution in (higher dimensional)
Image Space. This suggests possible generalizations of Bilateral and Tri-
lateral filters.

1 Deriving the Bilateral filter expression

Our model replaces the image f(x, y) with a distribution having support on
a surface in Image Space (R3 with coordinates x, y, z), which surface can be
represented as a function on the x, y image plane:

z = f(x, y). (1)

To be more specific, intuitively we assume the surface has “thickness” propor-
tional to z. As a result, the image f(x, y) is replaced by the following distribution
in 3D Image Space:

φ(x, y, z) = zδ(z − f(x, y)). (2)

For a simple practical example of how Bilatteral filtering works, let c(x, y) be
a 2-dimensional Gaussian kernel. Let s(z) be a Gaussian kernel. Now, a Gaussian
filter with the c and s kernels acting on φ would be:

ψ(u, v, w) =
∫

zδ(z − f(x, y))c(x − u, y − v)s(z − w)dxdydz. (3)

Integration over z gives us

ψ(u, v, w) =
∫

f(x, y)c(x − u, y − v)s(f(x, y) − w)dxdy. (4)

Now, we evaluate ψ on the surface (1). Using the notation ψ(u, v) = ψ(u, v, f(u, v)),

ψ(u, v) =
∫

f(x, y)c(x − u, y − v)s(f(x, y) − f(u, v))dxdy. (5)

This is exactly the conventional expression for Bilateral filtering. We believe
this derivation of (5) is a new result. We believe it can be a starting point for
understanding and generalizations of Bilateral.
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2 Log-space intuition

If expression (2) appears to the reader as chosen “ad hoc”, he may want to
consider a more intuitive expression for the distribution (produces the same
result):

φ(x, y, z) = δ(ln z − ln f(x, y)). (6)

It is trivial to see that (6) has support on the same surface (1). Now it
explicitly accounts for the fact that our perception of light is logarithmic. (Also,
the logarithm removes the problem of how to interpret the negative values of z
that we encounter when filtering in conventional non-logarithmic Image Space.)
Now (3) is replaced with

ψ(u, v, w) =
∫

δ(ln z − ln f(x, y))c(x − u, y − v)s(z − w)dxdydz. (7)

The reader has to perform integration in (7) over z (directly or by using
the properties of the delta function), which produces exactly (4). After that we
proceed as before.

3 Trilateral Filter and beyond ...

The reason for evaluating the distribution ψ(u, v, w) on the surface (1) was to
create an image from a distribution that is not an image. Since the original
image f(x, y) is noisy, intuitively it is hard to believe that the irregular surface
that defines it is “the right” surface on which we need to evaluate ψ(u, v, w).
“The right surface” or “the true image” – we don’t know what that really means,
and/or if this true image exists or can be known. But an approach of connections
where this surface is the integral surface of a connection in fibred image space
appears to be the right approach.

This suggests the idea that as approximation a smoother version of the orig-
inal surface might be appropriate for evaluating ψ(u, v, w). At each point this
might be a linear interpolation of the original image, which brings us to the
Trilateral filter ideas.

Other choices might be some blurred version of f(x, y), and probably evalu-
ation of ψ(u, v, w) on a Bilaterally filtered original. This can be iterated. Which
leads us to more questions:

- Which approach is best?
- Is there significant practical benefit of going beyond one iteration?
- Is there any math that would reduce all those iterations to one step?

The reader should not look for a final answer in this section. We are simply
trying to find a direction and asking questions. There is only one thing that
stands out as more clear: The fibred space approach appears to be just the right
framework for Bilateral.


